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ABSTRACT

Observations of sunspots, active regions, filaments, coronal arcades, and

interplanetary magnetic clouds indicate that the Sun preferentially exhibits

left-handed, negative-helicity features in its northern hemisphere, and their

opposite counterparts in the south, independent of sunspot cycle. We investigate

quantitatively the generation of magnetic helicity by solar differential rotation

acting on emerged bipolar sources of flux, using analytical and numerical

methods. We find that the vast majority of bipoles absorb negative helicity

in the northern hemisphere and positive helicity in the south, in accord with

observations. After two to four solar rotation periods have elapsed, the helicity

generated by differential rotation amounts to about 10% of the bipole’s squared

flux. Thus, each of the approximately 1 × 103 large bipolar regions emergent

on the Sun during sunspot cycle 21 entrained about 1 × 1043 Mx2 of helicity

in its 1 × 1022 Mx of flux. We show further that the roughly 5 × 103 coronal

mass ejections and associated interplanetary magnetic clouds that departed the

Sun during the cycle carried off about 5 × 1024 Mx of flux and 1 × 1046 Mx2

of helicity, within a factor of two of the estimates for solar production of these

quantities. Evidently, differential rotation acting on emerged bipolar sources

of flux can account quantitatively for the magnetic helicity balance of the Sun

and the heliosphere, as well as for the observed prevalence of negative-helicity

magnetic features in the north and positive-helicity features in the south.

Subject headings: Sun: activity — Sun: magnetic fields — solar wind
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1. INTRODUCTION

Over the past decade, it has become increasingly clear that several global patterns

of chirality, or handedness, are manifested in the Sun’s magnetic fields and their

associated plasma structures (Rust 1994; Zirker et al. 1997; Martin 1998). A quantitative,

mathematical measure of the chiral properties of these structures is the magnetic helicity

(Moffatt 1978; Berger & Field 1984; Brown, Canfield, & Pevtsov 1999). The observed

patterns exhibit helicities that are opposed in the northern and southern hemispheres, but

are independent of sunspot cycle, i.e., of the sign of the Sun’s global dipole field. Features

exhibiting such patterns include sunspot whorls, active region fields, eruptive X-ray loops,

filaments and their accompanying fibrils and coronal arcades, and interplanetary magnetic

clouds.

The earliest reports of chiral magnetic patterns on the Sun (Hale 1927; Richardson

1941) showed that some 80% of sunspots with discernible whorls showed a clockwise

rotation of the fibril pattern in the southern hemisphere and a counter-clockwise rotation in

the north. Similar patterns among the fields of solar active regions were found by Seehafer

(1990), who compiled force-free field reconstructions from line-of-sight magnetograms

showing that fields of positive helicity were dominant in the south and negative in the north.

Positive helicity implies a right-handed twist and a clockwise rotation of flux when viewed

from above, so his results agreed with those of Hale and Richardson. More recent work

using vector magnetograms (Pevtsov, Canfield, & Metcalf 1995) confirmed that the helicity

rule was obeyed in about 70% of cases studied. Similar percentages of the transient X-ray

loop brightenings associated with coronal mass ejections (Webb 1992) display S-shaped,

right-handed structures in the southern hemisphere, and their mirror images in the north

(Rust & Kumar 1996; Canfield, Hudson, & McKenzie 1999).

Analyses of Hα images and photospheric magnetograms have revealed two analogous
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chiralities of filaments, dextral and sinistral (Martin, Bilimoria, & Tracadas 1994), which

prevail in the northern and southern solar hemispheres, respectively. Subsequent studies of

the coronal X-ray arcades overlying filaments (Martin & McAllister 1997) have shown that

left-handed arcades invariably are associated with dextral filaments, and right-handed with

sinistral. These patterns are fully consistent with those for the fields of sunspots, active

regions, and X-ray loops. Moreover, Rust & Martin (1994) found a one-to-one relationship

between counterclockwise whorls and dextral filaments, and between clockwise whorls and

sinistral filaments, in sunspots with both discernible whorls and adjacent filaments. This

strongly suggests that dextral filaments contain left-handed, negative-helicity fields (Rust

& Kumar 1994; Rust 1999), consistent with the flow patterns reported for a number of

quiescent prominences (Gigolashvili 1978), although some (e.g., Martin 1998) dissent from

this view.

Interplanetary magnetic clouds (Burlaga et al. 1981; Goldstein 1984; Burlaga 1988;

Lepping, Jones, & Burlaga 1990) also are threaded by substantially twisted, helical fields,

and have been linked very strongly to disparition brusques, or disappearing filaments, on

the Sun (Marubashi 1986; Wilson & Hildner 1986). It has been established that these

clouds exhibit the same chirality as their underlying solar phenomena (Rust 1994; Bothmer

& Schwenn 1994, 1998; Bothmer & Rust 1997). Evidently, the disappearing filaments erupt

into the corona and then traverse the heliosphere within the solar wind, conveying their

imbedded magnetic flux and helicity along with them.

Exceptions to these helicity patterns occur in most categories of solar activity.

Nevertheless, the Sun’s preference for features adhering to these rules over such a broad

range of scales motivates the search for an underlying mechanism that is, evidently, global

in scope. Two principal candidates have been proposed (e.g., Seehafer 1990): the twisting of

magnetic fluxtubes in the convection zone, where dynamo action amplifies the fields prior to
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their appearance at the surface; and the shearing of the magnetic fields after emergence, by

the large-scale flows of the Sun’s differential rotation. Evidence for the dynamo mechanism,

in which the helicity is already contained in twisted fluxtubes when they erupt, includes

the cited observations of chirality patterns in relatively young, developed active regions

(Seehafer 1990; Pevtsov et al. 1995) and more recent observations of strong electric currents

and helicity generation in newly emerging magnetic flux (Leka et al. 1996; Wang 1996). All

of these results suggest strongly that the solar dynamo makes an important contribution to

the Sun’s helicity budget.

However, the solar differential rotation can make a substantial, possibly dominant,

contribution, as well. Many of the bipolar regions appearing on the Sun are very large

in scale and persist for several rotations (cf. Sheeley 1992), allowing the relatively slow

rotational shear to build up considerable twist in the field. As noted first by Sturrock

& Woodbury (1967), this shear generates negative helicity in the northern hemisphere

and positive helicity in the south. More recently, van Ballegooijen (1999) simulated the

combined effects of differential rotation and supergranular diffusion on bipolar magnetic

loops. He found that negative helicity is generated in bipoles in the north, whether initially

untwisted or containing a finite amount of initial helicity, thereby creating new or enhancing

initially left-handed fields and unwinding initially right-handed fields.

Our principal objective in this paper is to quantify the generation of helicity in

bipolar regions by the Sun’s nonuniform rotation, for comparison with observations. Most

determinations of the ‘helicity’ in solar active regions are restricted specifically to the

current helicity, whose volumetric density is B · ∇ × B and which is a measure of the

topological properties, such as twist and mutual linkages, of the lines of electric current

(Moffatt 1978; Berger & Field 1984). Much preferred, however, is the magnetic helicity,

whose density is A · ∇ × A = A · B and which reflects the topology of the magnetic field.
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Although the need to compute the vector potential A makes the evaluation of the magnetic

helicity more difficult, it is the superior measure because it reflects the properties of the

magnetic field directly. In addition, it is perfectly conserved while convected with the flow

in ideal magnetohydrodynamics (MHD) (Moffatt 1978), and is thought to be a rugged

invariant in highly conducting laboratory (Taylor 1986) and space (Berger 1999) plasmas

such as the solar corona.

As a model problem, we adopt the initial potential field generated by a dipole embedded

below a plane surface, and subject it to a linear shear flow on that surface. The initial

helicity generation rate is calculated analytically, and the asymptotic behavior is determined

through numerical simulation. Using observational data for solar bipolar regions, we then

estimate the total magnetic helicity produced during their individual lifetimes and over

an entire sunspot cycle. Similarly, we use a model and data for interplanetary magnetic

clouds to estimate their entrained magnetic flux and helicity. These two quantities for

the Sun and the solar wind agree with each other to within a factor of two. We also find

good agreement between the force-free field parameters derived from our simulations and

those measured in solar active regions. Our results strongly support the conjectures that

differential rotation, acting on emerged magnetic flux, makes a substantial contribution

to the Sun’s magnetic-helicity balance and may play an essential role in producing the

observed chiral patterns of magnetic activity.

2. SHEARED BIPOLAR MAGNETIC REGIONS

2.1. Theory

The magnetic helicity is defined by the volume integral

HM =
∫
dVA · B, (1)
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where A is the vector potential,

B = ∇× A, (2)

and the integral is evaluated over the entire coronal volume. In general, the helicity is

gauge-invariant, and thereby unique, only when the surfaces bounding the coronal volume

are magnetic surfaces (i.e., n̂ · B|S = 0 is satisfied everywhere). For the corona, bounded

below by the photosphere, this condition is not met. A gauge-invariant helicity still can be

obtained, however, by subtracting off the helicity of a corresponding current-free field which

has the same distribution of vertical magnetic flux at the photospheric bounding surface

(Berger & Field 1984). If the vector potential Ac for that field satisfies the Coulomb gauge

(∇ · Ac = 0) and has a vanishing normal component at the base (n̂ · Ac|S = 0), then the

potential helicity integral vanishes and we are left with the expression (1) for HM .

A suitable Ac can be constructed straightforwardly from the corresponding scalar

potential, φc, for the current-free field. The scalar potential, in turn, can be evaluated as an

integral over the base plane, using Green’s function for Laplace’s equation as the integration

kernel. In cartesian geometry (x, y, z), where z is the height above the bounding coronal

surface, we have

φc(x, y, z, t) =
1

2π

∫ ∫
dx′dy′

Bz(x
′, y′, 0, t)[

(x− x′)2 + (y − y′)2 + z2
]1/2

. (3)

Now, we set

Ac(x, y, z, t) = ∇× ẑ
∫ ∞

z
dz′φc(x, y, z

′, t). (4)

From this definition and ∇2φc = 0 it follows readily that

∇× Ac = −∇φc, (5)

i.e., the magnetic fields produced by these scalar and vector potentials are identical.

The results for Ac at the coronal base, z = 0, are used to set the boundary values for
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the vector potential A for the actual magnetic field B. An integration yields

A(x, y, z, t) = Ac(x, y, 0, t) − ẑ×
∫ z

0
dz′ B(x, y, z′, t). (6)

The volume helicity integral HM now can be evaluated directly.

Alternatively, the rate of helicity generation can be computed from a surface integral

over the base. In ideal MHD, the result for the production rate is (e.g., Berger & Field

1984)

dHM

dt
= −2

∫ ∫
dx dy [(Ac · v)B − (Ac · B)v] · ẑ. (7)

The first term on the right side describes the generation of helicity by horizontal motions

of the footpoints, while the second term represents the emergence or submergence of pre-

existing helicity by flows through the base plane. We consider only the footpoint-generation

mechanism in this paper. The numerical calculations to be described later use both the

volume helicity integral and the surface rate integral as diagnostics. To study the problem

analytically, we employ the surface rate integral, as follows.

As a model for the initial field of bipolar regions at the photosphere and above,

we assume a horizontal point dipole, with a characteristic (signed) field amplitude B0,

embedded a depth d below the surface z = 0. The x direction of the cartesian coordinate

system is aligned with solar longitude, i.e., with the direction of the differential rotation’s

shear flow, and the y direction with solar latitude. The tilt angle χ of the region is defined

with respect to the lines of longitude. It is positive if the dipole axis is rotated clockwise

with respect to the vertical, and negative otherwise. Northern-hemisphere bipolar regions

then usually have positive tilt angles, while those in the south generally have negative tilt

angles.

The resulting scalar potential for the initial field is

φc(x, y, z, 0) = B0d
3 x cosχ− y sinχ

[x2 + y2 + (z + d)2]3/2
. (8)



– 9 –

Evaluating the z integral of this function yields the vector potential,

Ac(x, y, z, 0) = ∇× ẑB0d
3x cosχ− y sinχ

x2 + y2

(
1 − z + d

[x2 + y2 + (z + d)2]1/2

)
, (9)

while its negative z derivative gives the vertical field,

Bz(x, y, z, 0) = 3B0d
3(z + d)

x cosχ− y sinχ

[x2 + y2 + (z + d)2]5/2
. (10)

For the shear velocity associated with the differential rotation, we use the local, linear form

v = Ωyx̂. (11)

On the Sun, the shear coefficient Ω is negative in the north and positive in the south.

These expressions, evaluated at z = 0, are substituted into the surface integral for the

helicity generation rate. In this case, the integral reduces to

dHM

dt
= −2

∫ ∫
dx dy AcxvxBz. (12)

Several of the resulting terms vanish due to symmetry. The remainder can be simplified

and combined by converting the integration variables to cylindrical polar coordinates.

Evaluating the resulting integrals yields for the initial rate of helicity generation

dHbmr
M

dt

∣∣∣∣
t=0

=
π

8
ΩB2

0d
4 cos 2χ. (13)

Since the magnitude of the flux of either polarity threading the base plane is

Φ = 2|B0|d2, (14)

as can be established from the expression for Bz, the generation rate can be rewritten as

dHbmr
M

dt

∣∣∣∣
t=0

=
π

32
ΩΦ2 cos 2χ. (15)

Thus, our analysis predicts an initial rate of helicity generation that is about 10% of the

product of the local shear coefficient, the square of the magnetic flux in the region, and the

cosine of twice the bipole’s tilt angle with respect to lines of longitude.
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Before considering the implications of this result for the Sun, we first address the later

evolution of the helicity generation process. As time passes, the vertical field Bz and vector

potential Acx evolve away from the initial values assumed above. The derived expression for

dHM/dt then no longer applies. It is possible, but cumbersome, to compute small departures

from the initial rate by expressing Bz as a Taylor series in Ωt and solving the resulting

induction equation to derive the spatial dependence. The resulting first-order correction to

equation (15), for example, is proportional to Ω2tΦ2 sin 2χ. To study the time-asymptotic

development of the bipolar region and determine the total helicity generated over its

lifetime, however, requires solving the problem with its full, nonlinear time dependence. For

this, we must turn to numerical techniques.

2.2. Simulations

To simulate numerically the late-time development of the sheared, bipolar magnetic

field, we used our new, time-dependent, magnetohydrodynamics model FCTMHD3D. It

is a three-dimensional (3D) extension of our previous MHD models, and employs similar

flux-corrected transport (FCT) techniques (DeVore 1991) to advance the equations in time.

FCTMHD3D was implemented on massively parallel computers to permit its use in lengthy,

slowly evolving simulations on well-resolved grids.

Our model solves the time-dependent, ideal MHD equations appropriate for the solar

corona:

∂ρ

∂t
+ ∇·(ρv) = 0, (16)

∂ρv

∂t
+ ∇·(ρvv) = −∇P +

1

4π
(∇× B)×B, (17)

∂U

∂t
+ ∇·(Uv) = −P∇ · v, (18)

∂B

∂t
= ∇×(v × B), (19)
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where ρ is the mass density, v is the velocity, P is the gas pressure, B is the magnetic field,

and U is the internal energy density, U = P/(γ − 1) = 3P/2.

For all but the very largest bipolar regions, the effect of the curvature of the solar

surface is negligible, so we use a cartesian coordinate system, as we did in our analytical

treatment above. The equations can be made dimensionless by scaling out a mass density

ρ0, field strength B0, and region size L, and appropriate combinations of those parameters

for other quantities such as velocity (B0/ρ
1/2
0 ) and magnetic helicity (B2

0L
4). This freedom

can be used to arbitrarily set the uniform mass density, the characteristic length, and the

magnetic flux of each polarity in the initial numerical state, for convenience. Results for

realistic solar parameters can be recovered by applying the appropriate scaling factors.

Open boundary conditions, with zero-gradient extrapolations of all variables, were

used on the four sides and the top of the domain. At the base plane, we held the mass

density ρ and pressure P fixed at their initial values, set the horizontal velocities to those of

the differential rotation, i.e., vx = Ωy, vy = 0, and required the vertical velocity to vanish,

vz = 0. The magnetic field at the base was extrapolated assuming zero gradient, as was

done at the remaining five boundaries.

We carried out two lengthy sequences of simulation runs, both initialized with bipoles of

depth d = L = 2 and strength B0 = 8. The initial mass density ρ0 = 1 and plasma pressure

P0 = 0.01 were uniform in our model corona, and the resultant plasma β = 8πP/B2 ranged

upwards from 4×10−3. We set the shear coefficient to Ω = −5×10−3B0/ρ
1/2
0 L = −2×10−2.

The sign is appropriate for the Sun’s northern hemisphere, and the magnitude corresponds

to a velocity shear across the bipole of about 2%
(
5
√

4π × 10−3
)

of the peak Alfvén speed.

This guaranteed a slow, quasi-static evolution of the coronal field in response to the imposed

footpoint motions. Although those motions were at least an order of magnitude faster

than the corresponding differential rotation velocities on the Sun, they served the critical
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purpose of consuming less than 10% of the computation time needed to obtain solutions

otherwise. We would not expect to see any significant differences between our results and

others obtained for more realistic velocities, save for the change in time scales.

The computational domain extended over [−10,+10] in x and y, and over [0, 10] in

z. The nonuniform grid was stretched exponentially away from the origin, in all three

directions, from roughly cubic cells of size 2.6 × 10−2. The spacing was stretched by a

factor of 14 along x and y and by a factor of 8 along z. About one-third of the grid points

lay within [−1,+1] along x and y, and nearly one-half within [0, 2] along z. The full grid

for these simulations was 150 × 150 × 120.

Our two cases were selected to bracket the extremes of tilt angle χ, suggested by the

analytical treatment of the previous section. The initial helicity generation rate, equation

(15), is proportional to cos 2χ. To confirm this prediction and explore the later time

development of the helicity, we examined the cases χ = 0 (no tilt; a horizontal bipole)

and χ = π/2 (maximum tilt; a vertical bipole). Only the first case is typically observed

on the Sun, at least among the relatively large bipolar regions of importance to the solar

magnetic-helicity balance. Those regions are known to exhibit a finite, systematic tilt which

increases with latitude - i.e., they obey Joy’s law (Hale et al. 1919) - but the tilt angles are

relatively small. This topic is discussed further below, with reference to observational data.

The resultant helicity generation rates dHM/dt and magnetic helicities HM are

illustrated in Figures 1 and 2, for the horizontal and vertical bipoles, respectively. Both the

rates and helicities are normalized, the rates to (π/32)|Ω|Φ2 and the helicities to (π/32)Φ2,

and displayed as functions of the normalized time |Ω|t. The initial rates agree very well with

the predicted values, − cos 2χ = ∓1, for the respective cases. The slopes of these curves,

i.e., the second time derivatives d2Hm/dt
2, are zero initially. This too is consistent with

our linearized analysis, whose first correction to the initial generation rate is proportional
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to sin 2χ. These contributions vanish for our two bipoles. As time passes, the helicity

generation rates gradually decline in magnitude and eventually weakly change sign, at

about time t ∼ 2/|Ω|. The extremal total helicities reached for the horizontal and vertical

bipoles were −0.93 and +0.77, respectively. Following the sign reversal of the generation

rates, the helicities retreated slowly and modestly from these values.

Our numerical results suggest that, within factors of order unity, we can describe the

generation of magnetic helicity in solar bipolar regions by differential rotation as follows.

The initial generation rate is given by the analytical result in equation (15),

dHbmr
M

dt

∣∣∣∣
t=0

∼ π

32
ΩΦ2 cos 2χ. (20)

Over a characteristic helicity generation time τ bmr, given by

τ bmr ∼ 2/|Ω|, (21)

the generation rate falls to essentially zero. At that time, the total magnetic helicity that

has been generated is approximately

Hbmr
M ∼ 1

2
τ bmr dH

bmr
M

dt

∣∣∣∣
t=0

(22)

∼ sgn(Ω)
π

32
Φ2 cos 2χ,

where the sign function is

= −1, x < 0,

sgn(x) = 0, x = 0, (23)

= +1, x > 0.

Thus, the total magnetic helicity generated is about 10% of the product of the squared flux

in the bipole, the cosine of twice its tilt angle, and the sign of the shear coefficient in the

hemisphere hosting the flux.
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For further comparison with observations, we have computed the volume-averaged,

force-free parameter α for our simulated bipoles. A quasistatic, strong magnetic field in the

low-pressure corona must be force-free, with the electric current aligned with the magnetic

field, viz.,

∇× B = αB. (24)

An average value of α for the region can be calculated from

〈α〉 =

∫
dV αB2∫
dV B2

=

∫
dVB · ∇ × B∫
dVB · B . (25)

The results, normalized to the inverse length L−1, are shown in Figure 3. For the horizonal

bipole, 〈α〉 rises monotonically throughout, reaching a value of about -2 when the magnetic

helicity peaks near time τ bmr. In contrast, 〈α〉 for the vertical bipole plateaus at a value

of about +1/2 at time τ bmr/2, and very gradually declines thereafter. The signs would be

reversed for a region in the southern hemisphere. Only the result for the horizontal bipole

is generally relevant to the Sun, for which we therefore can take

〈α〉bmr ∼ sgn(Ω)
2

L
. (26)

2.3. Application to the Sun

To apply these theoretical and numerical results to the Sun requires data for the

properties of the bipolar regions appearing on it. A record of the strengths, polarities, and

locations of the leading and following fluxes of the bipoles emergent during sunspot cycle

21 (1976-1986) was derived from Kitt Peak National Observatory magnetograms by N. R.

Sheeley, Jr. (Sheeley, DeVore, & Boris 1985; Wang & Sheeley 1989). This source list has

been used extensively by Sheeley and collaborators in a number of studies of the large-scale

solar magnetic field during sunspot cycle 21 (Sheeley 1992, and references therein).
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In their statistical analysis of the source record for cycle 21, Wang & Sheeley divided

the bipoles into three groups - strong, medium, and weak - with the divisions between

them set arbitrarily at 5 × 1021 Mx and 2 × 1021 Mx of flux. The strong group comprised

about 25% of the bipoles measured (710 of 2710) and contained about 65% of the total flux

(7 × 1024 Mx of 11 × 1024 Mx). The average strength of a source in the strong group was

1 × 1022 Mx. In addition, the greatest contribution to the total flux that emerged during

cycle 21 came from bipoles with fluxes of that amount. Thus, we use

Φbmr ∼ 1 × 1022 Mx (27)

as a nominal measure of the flux contained in large solar bipolar regions.

Wang & Sheeley also measured and displayed the tilt angles of the bipoles in their

three flux groups, and in the sample as a whole, as a function of the centroidal latitude

of the bipoles. The plot is very nearly linear, rising from about 2.5◦ of tilt at 5◦ latitude

to about 15◦ of tilt at 30◦ latitude. The tilt was defined to be positive if the leading

flux was equatorward of the following flux. In our coordinate system, this would be a

clockwise (positive) rotation away from lines of longitude in the north, and counterclockwise

(negative) in the south. Consequently, the Wang-Sheeley measured tilt angle χ satisfies

χ ≈ ψ/2, (28)

where ψ is the signed latitude of the bipole’s center of flux, positive in the north and

negative in the south. This is a quantitative expression of Joy’s law (Hale et al. 1919).

A simple form for the Sun’s latitude-dependent rate of rotation is

ω(ψ) = ω0 − ω2 sin2 ψ, (29)

where ω0, ω2 > 0, so that the equator rotates more rapidly than the poles. Larger bipolar

regions occasionally host long-lived sunspots, and are long-lived themselves, so for their
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rotation rate we use the value measured by Newton & Nunn (1951),

ω2 = 2.77 deg day−1 = 4.83 × 10−2 rad day−1. (30)

We difference the rotation rate ω(ψ) over a latitude increment ∆ψ and multiply by the

distance R� cosψ of the region from the Sun’s axis of rotation. The resultant shear velocity

is

v(ψ) = R� cosψ
∂ω

∂ψ
∆ψ, (31)

= −2ω2 cos2 ψ sinψR�∆ψ,

whence

Ω(ψ) = −2ω2 cos2 ψ sinψ (32)

is the required shear coefficient, since ∆y = R�∆ψ.

Combining these results for the tilt angle (28) and the shear coefficient (32), we find

that the initial helicity generation rate (15) takes the form

dHbmr
M

dt

∣∣∣∣
t=0

= − π

32
Φ22ω2 cos3 ψ sinψ. (33)

This expression is negative in the northern solar hemisphere and positive in the south. As

a function of latitude, it attains its peak magnitude at ψ = ±30◦. For our nominal bipole

with 1 × 1022 Mx of flux and the Newton-Nunn rate of differential rotation, the generation

rate there is

dHbmr
M

dt

∣∣∣∣
t=0

∼ −sgn(ψ) 3 × 1041 Mx2 day−1. (34)

The resultant total helicity produced, from equation (22), is

Hbmr
M ∼ −sgn(ψ)

π

32
Φ2 cosψ, (35)

or

Hbmr
M ∼ −sgn(ψ) 1 × 1043 Mx2 (36)
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for our nominal bipole.

The corresponding helicity generation time (21) is

τ bmr ∼ 2/|Ω| = 1/ω2| cos2 ψ sinψ|, (37)

whence

τ bmr ∼ 54 days (ψ = 35◦), (38)

∼ 108 days (ψ = 11◦).

The smaller, higher-latitude value for τ bmr is the minimum over the entire Sun. The larger

value obtains near the peak of the profile of total flux emerged during cycle 21 versus

latitude, as found by Wang & Sheeley. These generation times correspond to approximately

two and four solar rotation periods, respectively. Four rotation periods also is roughly

the lifetime of the Sun’s large bipolar regions, after which their flux becomes dispersed

among and merges with the large-scale background fields (e.g., Sheeley 1992). At still

lower latitudes, the differential rotation rate is slow enough that the flux of the bipoles is

dispersed before it can be fully charged with helicity. This modification produces a rapid

but smooth change in the profile of helicity generation across the Sun’s equator, rather

than the discontinuity suggested by our idealized expression (22). Elucidating the details of

this transition would require additional simulations including the effects of diffusion on the

bipolar fields, and is beyond the scope of the present paper.

Wang & Sheeley also displayed the pole separation as a function of source strength for

their bipolar regions. A bipole with 1 × 1022 Mx of flux has an average pole separation of

about 8◦, whence

L ∼ 8
π

180
R� ∼ 1 × 1010 cm. (39)

The associated force-free parameter α (26) at the end of the helicity-generation process is,
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for a bipole with modest tilt,

〈α〉bmr ∼ −sgn(ψ) 2 × 10−10 cm−1, (40)

comparable to the values measured in solar active regions (Seehafer 1990; Pevtsov et al.

1995; Leka et al. 1996; Wang 1996).

Finally, we noted above that more than 700 bipoles of nominal strength 1 × 1022 Mx

erupted on the Sun during cycle 21. Thus, the total emergent flux and the total magnetic

helicity generated by differential rotation over the cycle are

ΦSun ∼ 1 × 103 Φbmr ∼ 1 × 1025 Mx (41)

and

|HSun
M | ∼ 1 × 103 |Hbmr

M | ∼ 1 × 1046 Mx2, (42)

respectively. In §3.2 we compare these estimates with corresponding estimates for

interplanetary magnetic clouds.

3. INTERPLANETARY MAGNETIC CLOUDS

3.1. Theory

Burlaga et al. (1981) described interplanetary magnetic clouds as structures of the

order of an AU in size, possessing a high average field strength, a low average plasma

pressure, and a magnetic field direction that rotates monotonically through a large angle

as the cloud transits the solar system. Goldstein (1984) first proposed that interplanetary

magnetic clouds could be modeled as cylindrically symmetric fluxtubes with force-free

magnetic fields. Burlaga (1988) later suggested simplifying the model by assuming that

the electric current was a constant, uniform multiple of the magnetic field. He used the
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resulting model to fit several cases of observed magnetic clouds by trial and error. A

more systematic approach to the fitting procedure, employing least-squares techniques, was

developed by Lepping et al. (1990) and applied to a sample of 18 observed clouds.

Burlaga’s model is based on Lundquist’s (1950) constant-α, force-free magnetic field,

Br = 0,

Bφ = σHB0J1

(
α0

r

r0

)
, (43)

Bz = B0J0

(
α0

r

r0

)
,

where B0 is the signed, axial field of the flux rope, σH = ±1 selects a right- or left-handed

helical field near the axis, respectively, r0 measures the radial extent of the structure, Jn is

the Bessel function of the first kind of order n, and α0 is a dimensionless parameter fixed

by the boundary conditions. Differentiation of this field yields the constant-α, force-free

condition

∇× B = σH
α0

r0

B ≡ αB (44)

To fit the cloud data, the Lundquist solution is truncated at radius r0 and matched to a

potential field at larger radii. In particular, to yield a single reversal of the azimuthal field

of the flux rope during passage, the outer boundary is placed at the first zero of the Bessel

function J0, where the axial field vanishes. This condition fixes α0 (Abramowitz & Stegun

1964):

J0(α0) = 0, α0 = 2.40. (45)

As illustrated by Burlaga and Lepping et al., the resulting field changes from purely axial

at r = 0 to purely azimuthal at r = r0, producing a smooth, 180◦ rotation of the field

direction as the flux rope passes the observer.

Rearranging (44) for the constant-α force-free field yields the vector potential

A =
1

α
B = σH

r0

α0

B. (46)
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Gauge-invariance of the magnetic helicity is automatically ensured for the flux rope, since

the boundary r = r0 is a flux surface (B · n̂ = Br = 0 there), and the volume outside

contributes nothing since the field is potential beyond r = r0. Assuming a length # for the

cylindrical flux rope, then, the helicity of the interplanetary magnetic cloud, H imc
M , is

H imc
M = 2π#σH

r0

α0

∫ r0

0
dr rB2 (47)

= σHB
2
0r

3
0#

2π

α0

∫ 1

0
dxx

[
J2

0 (α0x) + J2
1 (α0x)

]
.

Evaluating the integrals analytically (Gradshteyn & Ryzhik 1965) and then numerically

(Abramowitz & Stegun 1964) yields the dimensionless coefficient

π

α0

[
J2

1 (α0) + J2
2 (α0)

]
= 0.60, (48)

whence

H imc
M = 0.60σHB

2
0r

3
0#. (49)

Similarly, the axial flux contained in the cloud can be computed from

Φimc =
∣∣∣∣2π

∫ r0

0
dr rBz

∣∣∣∣ (50)

= |B0| r2
0 2π

∫ 1

0
dxxJ0 (α0x) .

The dimensionless coefficient is

2π

α0

J1 (α0) = 1.4, (51)

whence

Φimc = 1.4 |B0| r2
0. (52)

3.2. Application to the Heliosphere

In their study of interplanetary clouds and the fitting of Lundquist’s force-free

cylindrical solution to the observed fields, Lepping et al. determined and tabulated the
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parameters of 18 well-observed clouds. An average over their dataset gave

|B0| = 2 × 10−4 G, (53)

r0 = 2 × 1012 cm.

About half of the clouds observed contained right-handed, or positive-helicity, fields. To

estimate the length # of the flux rope, we use the fact that several of the clouds extended at

least 30◦ in longitude at 1 AU. Hence, we take

# ∼ π

6
AU ∼ 1 × 1013 cm. (54)

This estimate also is consistent with the average measured angular extent (∼ 40◦) of coronal

mass ejections during sunspot cycle 21 (Webb & Howard 1994). Upon substitution into

equation (49) we obtain for the helicity of a typical interplanetary magnetic cloud

H imc
M ∼ σH 2 × 1042 Mx2. (55)

The corresponding magnetic flux contained in the cloud is, from (52),

Φimc ∼ 1 × 1021 Mx. (56)

To estimate the number of interplanetary magnetic clouds transiting the heliosphere

over the duration of the sunspot cycle, we use the results of Webb & Howard (1994). They

reported an occurrence rate for coronal mass ejections during cycle 21 corresponding to

more than 4000 events, and an even larger number of disappearing filaments and eruptive

limb prominences combined. Let us assume that the small sample of clouds studied in

detail by Lepping et al. (1990) is representative of all clouds. Then, over an entire cycle, we

expect the solar wind to transport a total flux and helicity in clouds associated with solar

eruptive events of

ΦWind ∼ 5 × 103 Φimc ∼ 5 × 1024 Mx. (57)
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and

|HWind
M | ∼ 5 × 103 |H imc

M | ∼ 1 × 1046 Mx2, (58)

respectively. These estimates agree, to within a factor of two, with those obtained earlier

for the flux and helicity appearing in bipolar regions on the Sun, (41) and (42). Also, since

the volume VWind of a spherical shell of plasma passing the earth at 500 km s−1 over the

11-year cycle is about 5× 1043 cm3, we find for the average helicity density in interplanetary

clouds in the solar wind at 1 AU

|hWind
M | = |HWind

M |/VWind ∼ 200 Mx2 cm−3. (59)

This estimate is in excellent agreement with direct measurements of the average net helicity

density associated with coronal mass ejections during cycles 20-22, with an additional,

roughly equal amount contributed by the Parker spiral in the background solar wind (Smith

1999).

4. SUMMARY AND DISCUSSION

The principal results of our study relate the rate and time scale of magnetic helicity

generation, the total helicity produced, and the resultant force-free parameter for a solar

bipolar region to its initial flux, tilt angle, and pole separation, and the local shear coefficient

associated with differential rotation. We evaluated these expressions for a nominal bipolar

region appearing on the Sun with 1 × 1022 Mx of flux, a pole separation of 1010 cm, and a

tilt angle of about half the latitude (Wang & Sheeley 1989). We found that about 1 × 1043

Mx2 of magnetic helicity are produced in such a region over its lifetime, yielding an average

force-free parameter α of about 2 × 10−10 cm−1. The latitude-dependent generation rate is

as high as 3 × 1041 Mx2 day−1, peaking at about 30◦ latitude. All of these quantities have

the same sign and are nearly always negative in the northern solar hemisphere, and positive
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in the south. The helicity generation ebbs and then weakly reverses after 50 to 100 days,

or two to four solar rotation periods, have passed. Accumulated over the roughly 1 × 103

such regions which emerge during the sunspot cycle, we find that the Sun processes about

1 × 1025 Mx of large-scale magnetic flux through its surface per cycle, which differential

rotation winds up to generate about 1 × 1046 Mx2 of magnetic helicity in the corona.

In order to avoid a monotonic accumulation of flux and helicity in its atmosphere as

time passes, the Sun must submerge an equal amount of these quantities back into its

interior or shed them into the solar wind. The mechanism for the latter is the coronal mass

ejection associated with a disappearing filament or eruptive X-ray loop, which is manifested

as an interplanetary magnetic cloud propagating outwards along with the solar wind

(Marubashi 1986; Wilson & Hildner 1986; Webb 1992; Rust 1994; Bothmer & Schwenn

1994, 1998; Bothmer & Rust 1997). We found that a typical cloud (Lepping et al. 1990)

contains about 1 × 1021 Mx of flux and 2 × 1042 Mx2 of helicity. Accumulated over the

approximately 5× 103 such events occurring over the sunspot cycle (Webb & Howard 1994),

we find that about 5 × 1024 Mx of flux and 1 × 1046 Mx2 of helicity are ejected by the Sun

in the form of magnetic clouds. The latter also is fully consistent with an average helicity

density in ejecta of 200 Mx2 cm−3 at 1 AU, convected at the 500 km s−1 speed of the solar

wind (Smith 1999). These estimates for the total flux and helicity in clouds are within a

factor of two of our corresponding numbers for solar production of these quantities.

In contrast, Bieber & Rust (1995) and Rust (1997) estimated that the Sun would shed

significantly smaller amounts, 1 × 1024 Mx and 2 × 1045 Mx2, respectively, of magnetic flux

and helicity over the sunspot cycle. They based their estimate on a model of subsurface

winding of the Sun’s poloidal field by differential rotation. This produces toroidal flux

that erupts to form active regions, and eventually escapes the surface to be carried off

with the solar wind. The effect of differential rotation on emerged flux was ignored. Their
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multiparameter model can be adjusted readily in several ways to accomodate a higher

rate of helicity generation and shedding, which clearly is needed to conform with the

observations. Our model, unlike theirs, matches the total magnetic flux shed and helicity

generated by the Sun with no adjustable parameters.

We did use several idealizations and estimates in our analysis and simulations that

affect the accuracy of our quantitative results, to within probably a factor of two at most.

These include the use of an idealized potential field as the initial state for our bipolar

regions; the approximations of a linear shear profile and a cartesian geometry; and the

parameters assumed for our nominal solar bipolar region. We neglected the influence of

turbulent diffusion of flux on the evolution of the bipoles (van Ballegooijen 1999), but this

too is unlikely to have a substantial effect on our results for large, long-lived regions. The

opposite is true for small, short-lived bipoles, but they make a negligibly small contribution

to the Sun’s total helicity in any case. The mutual helicity of neighboring, interacting

bipoles (Berger 1999) may be important occasionally, particularly in complexes of activity

featuring recurring eruptions of new flux. Again, however, only modest changes in our

quantitative results are expected, in the absence of very tangled structures containing

multiple linkages between bipoles.

Thus, our results strongly suggest that the shearing of bipolar regions by differential

rotation contributes substantially, if not predominantly, to the Sun’s total magnetic helicity.

We found that 1 × 1043 Mx2 of helicity will be generated over the lifetime of a region with

1 × 1022 Mx of flux. To our knowledge, the only quantitative estimate of the helicity in

an observed solar active region was made by Wang (1996), who deduced that ∼ 1 × 1043

Mx2 of helicity was produced in an emerging-flux region over a period of just a few hours.

The corresponding generation rate was 1 × 1044 Mx day−1, three orders of magnitude

faster than our rate due to differential rotation. This example demonstrates clearly the
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importance of helicity emergence in at least some solar active regions. However, a much

more widely used measure of the helicity in emerging and developed active regions is the

force-free parameter α. We obtained a volume-averaged value of 2 × 10−10 cm−1 for our

nominal bipolar region, which is within a factor of three of observational estimates for

this parameter (Seehafer 1990; Pevtsov et al. 1995; Leka et al. 1996; Wang 1996). As a

proxy for the magnetic helicity present in newly emerging and young active regions, the

observed force-free parameters suggest that the solar dynamo produces about as much

helicity prior to emergence as does differential rotation after emergence. Quantifying the

relative importance of these contributions to the Sun’s total magnetic helicity requires

further research, especially measures of the amounts of helicity emerging in the form of new

flux and residing in mature, fully developed active regions.

We did not consider any net helicity to be present in our initial bipoles. This could be

adjusted easily in additional numerical experiments by first twisting the flux in the loops,

moving the footpoints along contours of constant vertical field (van Ballegooijen 1999).

Such motions would generate helicity in the overlying coronal flux without modifying the

vertical field or the current-free vector potential at the photosphere. Thereafter applying

the differential rotation to the resulting, twisted loop would generate additional helicity at

the same rate as for our untwisted, current-free loop; the helicity-generation integral would

be unchanged. Thus, any pre-existing net helicity produced by the envisioned twisting

would simply change the zero point of the helicity for our new case. This initial helicity

would be augmented or depleted with time, according to its sign and that of the rate of

generation by differential rotation.

Our results further suggest that differential rotation acting on the Sun’s emerged

sources of magnetic flux nearly invariably creates left-handed, negative-helicity fields in the

northern hemisphere, and their right-handed, positive-helicity counterparts in the south.
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This is consistent with the chiral patterns observed in sunspot whorls, active region fields,

eruptive X-ray loops, filaments and their fibrils and arcades, and interplanetary magnetic

clouds. The rule for differential rotation is not inviolate, due to the dependence of the

resultant helicity on the tilt angle of the bipole. Regions tilted more than 45◦ to the

horizontal are twisted in the opposite sense to those tilted less than 45◦. However, only

about 5% of solar flux emerges at such high tilt angles (Wang & Sheeley 1989), and most

of that at angles only slightly in excess of 45◦, where the generation rate vanishes. Thus,

differential rotation produces helicity in emerged bipolar flux in such a way as to obey the

observed chirality rules essentially all of the time.

This leaves unexplained the not-infrequent exceptions to some of the observed patterns.

About 20% of sunspot whorls (Hale 1927; Richardson 1941) and 30% of active regions

(Pevtsov et al. 1995) and transient X-ray loop brightenings (Rust & Kumar 1996; Canfield

et al. 1999) exhibit the minority helicity in the hemisphere in which they occur. These

percentages are far higher than the 5% of exceptions anticipated for differential rotation

acting on erupted bipolar flux. Thus, we conclude that helicity generation by surface

differential rotation cannot account for those solar features with minority chirality.

On the other hand, it also has been asserted (e.g., van Ballegooijen & Martens 1990;

Rust & Kumar 1994; Rust 1997) that the observed patterns of quiescent filaments cannot

be understood based on the action of differential rotation on emerged solar flux. The

argument is that a potential-field arcade whose polarity inversion line is oriented east-west

will be sheared to generate helicity of the wrong sign. This conclusion is undeniably correct,

and is supported by our analysis and simulations of a bipole tilted at 90◦. However, we

contend that the premise is wrong-headed: flux does not emerge on the Sun in the form of

potential arcades with east-west inversion lines, but rather as bipolar regions with roughly

north-south inversion lines. As time passes and differential rotation shears the flux of these
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bipoles, the inversion lines rotate toward a more east-west orientation. Late in the regions’

development, although the rate of helicity generation reverses sign, it thereafter remains

small in magnitude. As our simulations for a horizontal bipole demonstrate, the helicity

produced during the early life of the region has the correct sign and is only modestly

reduced in magnitude during this late phase. It is these remnant fields, left-handed with

negative helicity in the north, and their opposite counterparts in the south, that are

available to participate in the formation of filaments and other chiral features in their

respective hemispheres, in accordance with the observed patterns.

Finally, our results suggest an important constraint on models for solar eruptive

behavior. We observed that comparable total amounts of magnetic flux and helicity are

contained in the bipolar regions sheared by the Sun’s nonuniform surface rotation and in

the helically wound interplanetary clouds transiting the heliosphere, over the course of the

sunspot cycle. This is in accord with expectations that these quantities should be at least

approximately conserved in a highly conducting plasma such as the solar corona (Taylor

1986; Berger 1999). On the other hand, there are 5-10 times as many eruptive events as

there are large active regions, with each remnant cloud containing only 10-20% of the flux

and helicity of each original bipole. This clearly favors eruption mechanisms that at any one

time allow only a small portion of the field comprising typical large-scale solar structures

to escape. The remaining flux and helicity are left behind, evidently, to be reconfigured

and eventually ejected in subsequent events. It is well known that many, if not all, solar

eruptions originate in multipolar magnetic configurations (Hu et al. 1996; Webb et al.

1997; Innes et al. 1999), rather than in simple bipolar structures such as isolated loops.

This complexity is fully compatible with our model of global conservation of magnetic flux

and helicity and their shedding by the corona. It also is compatible with observations of

interplanetary clouds as helically twisted, force-free, constant-α flux ropes: the latter are

just the minimum-energy states of magnetic fields with prescribed helicity (Woltjer 1958),
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in low-pressure plasmas such as the solar wind.
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Fig. 1.— The normalized magnetic-helicity generation rate dHM/dt (open circles) and

accumulated magnetic helicity HM (filled circles) displayed versus normalized time t, for

a horizontal bipole (tilt angle χ = 0).



– 34 –

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

 

H
el

ic
it

y 
In

je
ct

io
n

 R
at

e 
d

H
M

/d
t

M
ag

n
etic H

elicity H
M

T ime

H
M

d H
M

/dt

χ = π/2

Fig. 2.— Same as Figure 1, for a vertical bipole (tilt angle χ = π/2).
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Fig. 3.— The normalized force-free parameter α, displayed versus normalized time t, for the

horizontal (χ = 0) and vertical (χ = π/2) bipoles in Figures 1 and 2, respectively.


